Changing the Order for a Triple Integral

Tyler Bongers

June 15, 2015

The purpose of this note is to compute the volume of a certain solid in \mathbb{R}^{3} in six different ways, corresponding to the six possible orders of integration in a triple integral. Let's consider the solid contained in the first octant, and bounded by the plane $y=1-x$ and the surface $z=1-x^{2}$; a graph of this solid was done in class today, and it's also problem 34 in Section 15.7 of the textbook. This can be described by the inequalities

$$
\begin{aligned}
& 0 \leq z \leq 1-x^{2} \\
& 0 \leq y \leq 1-x \\
& 0 \leq x \leq 1
\end{aligned}
$$

Note that the "corners" of the object lie at the points $(1,0,0),(0,1,0)$ and $(0,0,1)$. We'll now compute the volume via $V=\iiint_{E} d V$ with each possible order:

- The easiest way to order it is either $d z d y d x$ or $d y d z d x$, since we already have the inequalities describing the bounds. Let's do $d z d y d x$ first: we can write

$$
\begin{aligned}
V & =\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{1-x^{2}} d z d y d x \\
& =\int_{0}^{1} \int_{0}^{1-x} 1-x^{2} d y d x \\
& =\int_{0}^{1}\left(1-x^{2}\right)(1-x) d x \\
& =\int_{0}^{1} 1-x-x^{2}+x^{3} d x \\
& =1-\frac{1}{2}-\frac{1}{3}+\frac{1}{4}=\frac{10}{24}=\frac{5}{12}
\end{aligned}
$$

- It's just as easy to do $d y d z d x$, giving

$$
V=\int_{0}^{1} \int_{0}^{1-x^{2}} \int_{0}^{1-x} d z d y d x
$$

Computing this also gives $5 / 12$, in essentially the same way.

- Let's next do order $d y d x d z$. The z bounds are easiest, since we have $0 \leq z \leq 1$. Now for each fixed z, we need to determine what appropriate bounds on x and y are (where the bounds on x can only depend on z). Solving for x in terms of z, we now have the inequality

$$
0 \leq x \leq \sqrt{1-z}
$$

Furthermore, we have $0 \leq y \leq 1-x$, so our integral ought to be

$$
V=\int_{0}^{1} \int_{0}^{\sqrt{1-x}} \int_{0}^{1-x} d y d x d z
$$

Computing this integral is again not too bad:

$$
\begin{aligned}
V & =\int_{0}^{1} \int_{0}^{\sqrt{1-z}} 1-x d x d z \\
& =\int_{0}^{1} x-\left.\frac{1}{2} x^{2}\right|_{x=0} ^{x=\sqrt{1-z}} d z \\
& =\int_{0}^{1} \sqrt{1-z}-\frac{1}{2}+\frac{1}{2} z \\
& =-\frac{2}{3}(1-z)^{3 / 2}-\frac{1}{2} z+\left.\frac{1}{4} z^{2}\right|_{z=0} ^{z=1} \\
& =\left(0-\frac{1}{2}+\frac{1}{4}\right)-\left(-\frac{2}{3}\right)=\frac{5}{12}
\end{aligned}
$$

again.

- Now let's do $d x d y d z$. As before, $0 \leq z \leq 1$. Now for a fixed z, we must find appropriate bounds on x and y, where the x bound can involve y. This is a bit more difficult than the previous bounds. The base region is a triangle with vertices at $x=1, y=1$ and the origin; but as z increases, we'll cut off the tip of the triangle (in the x direction) and integrate over a smaller region. In the extreme, when $z=1$, we're only integrating over a line segment between the origin and the point $(0,1)$. At height z, we'll have a trapezoid with two sides on the axes: The other two sides are described by $x=\sqrt{1-z}$ and $y=1-x$. As we're integrating in x first, we have to separate this into two regions: A rectangular region described by

$$
0 \leq x \leq \sqrt{1-z}, \quad 0 \leq y \leq 1-\sqrt{1-z}
$$

(draw this! The y-bound is found by finding y at the extreme right bound) together with a triangle containing the rest of it:

$$
0 \leq x \leq 1-y, \quad 1-\sqrt{1-z} \leq y \leq 1
$$

Hence,

$$
V=\int_{0}^{1} \int_{0}^{1-\sqrt{1-z}} \int_{0}^{\sqrt{1-z}} d x d y d z+\int_{0}^{1} \int_{1-\sqrt{1-z}}^{1} \int_{0}^{1-y} d x d y d z
$$

The first integral is $1 / 6$, and the second is $1 / 4$: adding these gives the correct result of $5 / 12$.

- For the final two orders, we integrate in y last: The y bounds are $0 \leq y \leq 1$. Now imagine a fixed y; this corresponds to taking a slice of our object along the $x z$-plane (at some displacement y). If we integrate in z first, then the bound $0 \leq z \leq 1-x^{2}$ still works; to integrate in x, we just rearrange our bound to find $x \leq 1-y$. So we can write the integral as

$$
\begin{aligned}
V & =\int_{0}^{1} \int_{0}^{1-y} \int_{0}^{1-x^{2}} d z d x d y \\
& =\int_{0}^{1} \int_{0}^{1-y} 1-x^{2} d x d y \\
& =\int_{0}^{1} x-\left.\frac{x^{3}}{3}\right|_{x=0} ^{x=1-y} d y \\
& =\int_{0}^{1}(1-y)-\frac{(1-y)^{3}}{3} d y \\
& =y-\frac{1}{2} y^{2}-\left.\frac{(1-y)^{4}}{12}\right|_{y=0} ^{y=1} \\
& =1-\frac{1}{2}+0-\left(0-0-\frac{1}{12}\right)=\frac{5}{12}
\end{aligned}
$$

- The final ordering, $d x d z d y$ is pretty similar to the ordering $d x d y d z$ above. If we fix y, then x ranges from 0 to $1-y$, while z ranges from the bottom at $z=0$, to the top curve $1-x^{2}$. To integrate this $d x$ first, we must split this into two regions: A rectangle, and a curved region. The region has vertices at the origin and $x=0, z=1$, as well as $x=1-y, z=0$ and $x=1-y, z=1-x^{2}=2 y-y^{2}$. Hence, we should have

$$
V=\int_{0}^{1} \int_{0}^{2 y-y^{2}} \int_{0}^{1-y} d x d z d y+\int_{0}^{1} \int_{2 y-y^{2}}^{1} \int_{0}^{\sqrt{1-z}} d x d z d y
$$

These integrals are $1 / 4$ and $1 / 6$, respectively - so we again got $\frac{5}{12}$.

